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ABSTRACT 
Criteria are given which characterize Co-H and Co-A maps from arbitrary 
double suspensions to odd dimensional spheres in terms of the maps in the 
EHP sequence. 

Introduction 

L e t  f :  ~ 2 X - ' ~ S  2n+l be a map. We assume that spaces are p-local, with p an 

odd prime, but otherwise X is arbitrary of finite type. Our first result is 

THEOI~M 1. f is a co-H-map if  and only i f  H o f'* is null-homotopic. 

Here H :  fhS 2n + i _~ t-ZS,2~ + 1 is any Hopf invariant and f *  denotes the single 

adjoint off. 
Our main topic is the notion of a co-A-map. The definition is deferred, 

but roughly, co-A-maps are co-H-maps with a suitable homotopy making the 
induced comultiplication on the mapping cone homotopy associative. Our 
aim is to establish a result like Theorem 1 for co-A-maps. We wish to 
characterize the co-A-maps to spheres in terms of the standard invariants 

of  homotopy theory. 
In [H], it was shown that the maps constructed by Selick [$1] fit into the 

following homotopy commutative diagram, 
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~.~3S2n0 + | [20, ~.~jp_ 1 S2n t'~ , ~'~2S2n + l ~ , ~'~2S2np + l 

o , \  is / 
~ 3 S 2 n p  + 1 , ~'~2S2np+l{p } 

provided T is chosen to be an H-map [Gt]. Here, the top row is from Toda's 
fibration and the bottom row is from the fibration for the degree p map of 
S2np + t. Our main result is 

THEOREM 2. f :  Y~2X ~ S 2" + l is a co-A-map i f  and only i f  S o f** is null- 

homotopic where f** is the double adjoint. 

A reformulation of Theorem 2 which is useful for calculations is ' f  is a 
co-A-map if and only if D,E 2 . T .  fis divisible by p'  where 

f : X 2" 

is any lift off**. This contrasts with a result from [$2] that f i s  horn,topic to a 
double suspension if and only if there exists some lift f such that T o f is 
divisible by p. Thus qualitatively, the difference between co-A-maps and 
double suspensions is a double suspension. In the case of p-local two-cell 
complexes of the form 

y _ $2. + t U e' 

this difference is present on the mapping cone. In [BH] we show that Y admits 
the structure of a cogroup if and only if the attaching map is a co-A-map, and 
examples not horn.topic to any suspension are given. 

From the main result of [CMN], we know that multiplication by p, in the 
fo rmf  o pl,  is always homotopic to a double suspension. Our Theorem 2 yields 
the weaker result that f o p l  is always a co-A-map. 

As in other parts of homotopy theory, the three-sphere is special for 

this theory. 

T~EOREM 3. f:  ~2X ~ S 3 is a co-A-map i f  and only i f  there is g: X-- ,  S t 

such that f "-" y2g. In particular I I , S  3 has no essential co-A-maps of  odd order. 

A somewhat technical, but sharper form of Theorem 3 is the following result. 
Let at generate l"12oS 3. 

TI~OREM 4. Let f :  X -" S 2p- t. Then Y~2 f is divisible by p in [I:2X, S 2p+t] i f  

and only i f  at * X f is null-homotopic. 
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The paper is organized in three sections. The proof of  Theorem I is given in 

the first section. This result is essentially already in the literature [BH], [Gd. 
The notion of  the co-A-deviation is developed in the second section. There 

are two parts to this discussion. The first concerns geometric properties while 

the second is algebraic. In the third section, the problem is reduced to the study 

of  a universal example and the proofs of the remaining theorems are given. 

§1. Proof of Theorem 1 

We denote the k-fold bouquet of  a space X by X(k ) and similarly for maps. 

We use A to denote a positive integer whose mod p reduction is a primitive 
( p - 1)- st root of  unity. 

If f :  y,2X-*-SEn+I is a co-H-map, then any p-th Hil ton-Hopf invariant of  

fAa o f *  is trivial, where a is the comultiplication on S 2~ + 1. Thus f *  factors 

through a complex of  dimension 2 n ( p -  1) and H of*  is inessential for 

dimensional reasons. We note in passing that only one suspension on X is 

needed for this argument. Let 2/ :  XX---ZX be the k-fold sum of  the identity 

map. We abuse notation to let A also denote a map of degree A on S 2n + 1. The 

Hilton-Milnor theorem and the second suspension give an isomorphism of  

abelian groups 

['~~X, ~"~S~2~+1] ~ II [a~=~X, ~'~S 2nlw[+l] 
wEJ 

where J is a Hall basis for the free Lie algebra on two generators and I wl 
denotes weight. Expressing f~a o f *  in terms of  components yields 

f~tr of* = I'[ h~(f*), hw: ~')S2n+l'-~'~S2n[w[+l 
w 

Since S 2n + 1 is an H-space, f *  o M ~ D.A o f* ,  thus 

f ~  °Jr* o ~  -~ f~(A vA) o f~a °S*. 

Expressing this formula in terms of components yields 

(2 Iwl - 2)hw(f*) = 0 for all w. 

In particular hw(f*) -= 0 for I ~ ] w I < P since A lwM - 2 is not divisible byp.  If 

H o f*  is null, then f *  factors through a complex of  dimension 2n(p  - I), 

hence h , ( f * )  -- 0 for l wl > p by dimensional arguments. 
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§2. The co-A-deviation 

The topic of higher associativity for maps of H-spaces is well developed. For 
homotopy associativity, the invariants have a number of useful geometric 
properties. These properties are developed in [Z2]. Dual notions make sense 
for co-H-spaces and we develop some of their properties here. Since the proofs 
follow the same format as in the case for H-spaces, we suppress details, leaving 
only essential ingredients. 

Spaces have non-degenerate basepoints, all maps and homotopies preserve 
basepoints and cones, suspensions etc. are reduced. 

Let f :  (ZX, r)--- (Y, a) be a co-H-map ofhomotopy associative co-H-spaces, 
where "r is the suspension cogroup structure. Let F be a primitive homotopy 
from ( f v  f )  o z ~ a o f. Thus in addition to connecting the named maps, F has 
a property guaranteeing that the induced map O on the mapping cone C of f is a 
comultiplication; the following diagram commutes up to homotopy 

dr 

CxC 

This point is discussed in [BH]. In particular, no loss of generality is entailed 
by requiring primitive homotopies for co-H-maps. 

The co-A-deviation is constructed from F and homotopies associated with z 
and a. We use the following notation for stringing together a list of homoto- 
pies. Given H~ . . . .  , H~ : Z X I ~  Wsuch that Hi(z, 1) = Hi+~(z, 0), define 

by 

{ H I , . . . , H n } : Z ~  W f 

{H~ . . . .  ,Hn}(z,t)=Hi(z, n t - i + l )  i f i - l < n t < i .  

We also write H'(z ,  t) for H ( z ,  1 - t). 
Now define 

A(f,  F) : (ZX, *)"~ (AY<~), c) 

by stringing six homotopies in 

A(f,  F) = {( fv  F) o z, (1 v a) oF, Lr of, (a v 1) o F', (F' v f )  o ~', f(3) o L ~ } .  

In this formula, A is the free loop functor and c is the map sending all of the 
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circle to the basepoint of Yo). We regard the circle as the unit interval with 
endpoints identified to the basepoint. The homotopy Lx is from (1 v ~) o ~ to 
(z v 1) o z, and likewise for Ly, tr. The co-A-deviation is a homotopy class of 
maps obtained from a normalization ofA(f ,  F). Let u : (ZX, *)--" (AYe3), ¢) be 
the map which for each x ~ Z X  sends every point in the circle to f~3) o(1 v T) o 
• (x). Since all maps are pointed, the evaluation at the basepoint of the 
difference A( f ,  F) - u (with respect to the suspension coordinate in TAr) is 
homotopic to the constant map. Hence there is a map 

A, ( f ,  F) : (ZX, *)--* (I-'~Y(3), *) 

whose composition with the inclusion of f~Y~3) into AYe3) is homotopic to 
A ( f , F ) - u .  Since this inclusion induces a split injection of generalized 
homotopy groups, the homotopy class of A,  is unique. We use this notation to 
mean the homotopy class. 

DEFINITION. f is a co-A-map provided there is a primitive homotopy F 
such that A, ( f ,  F) is the homotopy class of the constant map. 

It is easy to check that the comultiplication # on C induced by Fis  homotopy 
associative provided A,(  f , F) -- ,. 

We now turn to some of the properties of this construction. 

(2.1) Composition. If g:  Z --- X, then 

A , ( f  o Zg, F o Zg) = A , ( f ,  F) o Y.g. 

If both (Y, o-) and (Z, v) are suspension cogroups and g:  Y--* Z is a suspen- 
sion, then 

A ,  ( g ° f ,  g{2) o F)  = ~)go) o A , (  f , F). 

The point in having suspension requirements on g is to perform the 
factorization without introducing new homotopies. The suspension coordi- 
nate on ~ allows us to write (Y,g v T_~) o r = T o Zg, and similarly for Lx. 

(2.2) Dependence on the homotopy class off. I f f ~  gvia homotopy K, then 
A,(f,  F) = A,(g, G) where G = {(K v K)' o ~, F ,  a o K}.  

These two properties are all that is needed from this section for one of the 
implication directions of Theorem 2. 

(2.3) Dependence on the homotopy F. If  we vary F among primi- 
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tive homotopies, the variation of A. is described in terms of a certain 
coboundary map, 

~2 : [ZX, [l Ym]--" [ZX, [l Y¢3~1. 

We define ~k in general. Let 

E~, Ek+~ : Y~k:-" Y~k+~) 

be the obvious embeddings opposite the first and last factors respectively. Let 

be the map 

o'i : Y(k)"-" Y(k + l), l< i<=k  

= l v . . . v a v . . . v l  

with a in the i-th place. Then for f :  ZX--* flYck), define 

k 
ak(f) =-- fiE, * f  + 2 ( -- 1)'aa, . f  + ( - 1)k+'D.Ek+, . f .  

i - !  

Since the groups involved are abelian, J is bilinear as an operator on f and 
j2 = 0.We call Jk the geometric coboundary. IfF~, F2 are primitive homotopies 
from ( f v f ) .  z to a *f, then 

where 

a , ( f ,  El) - a , ( f ,  F2) = ~2w 

w -- {F,, F~} - u 

with u constant at ( f v f ) . ~ .  Since primitive homotopies (more pre- 
cisely, their differences) axe classified by maps from ZX to the fibre of 
IIYa)--* [l(Y X Y), modification of a primitive homotopy by such a map 
produces another primitive homotopy, so we write 

A,(f, F + w) -- A, ( f ,  F) + 62w. 

In particular, f i s  a co-A-map if and only i f A , ( f ,  F) = 62w some w. 

(2.4) Zabrodsky's formula. The geometric fact enabling us to make the 
required calculations is a relation between co-H- and co-A-deviations dis- 
covered by Zabrodsky (in the dual case) in his study ofhomotopy assoeiativity 
of H-spaces [Zd. Consider the situation 

(ZZ, v) r ~  (y .~ ,z)  : , ( Y , a )  
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where f o  Zg is null-homotopic. A given null-homotopy determines a map from 

the mapping cone C of Zg 

h : C - - " Y .  

The map h need not be a co-H-map. Its co-H-deviation, determined by a o h, is 
a map from Z2Z to Yc2) and is represented by the adjoint of 

D h --- {(h v h) o v, F o g ,  o o h'} : E Z  -" ~ Y¢2) 

where h is regarded as a homotopy from * to f o  Eg. Here the suspension 
coordinate is used to write Zgt2 ) o v = z o Zg avoiding an extra homotopy in our 
formulas. Then Zabrodsky's formula reads 

62Dh = A , ( f o  Zg,  F o Zg). 

Of course A ,  lies in the image of 62. The usefulness of this formulation is its 
precision. It will enable us to analyze the co-A-deviation for maps where the 
mapping cone provides no information. 

(2.5) Compatibili ty with se l fmaps .  We impose more suspension co- 
ordinates and work with f :  (Z2X, z )~(Z2Y,  a) where both ~ and a are the 

suspension cogroup structures. Let 2t, 22 be the A-fold sums of  the identity of  
Z2X, Z2Y respectively. We use the other suspension coordinate, so that 
(21 v 2 0  o z = z o21 and similarly for 22, a. Suppose also that there is a 
homotopy K from 22 o f t o  f o  21. Let D:  Z2X ~ fl(E2yt2)) be given by 

D = {(22 v22)oF,  a oK, F '  o 2,, ( K v K ) ' o z }  -- u 

where u = (22 v 2],2) o ( f v  f )  o z. Then we have 

f2(22 v 22 v 22) o A , (  f , F)  - A , (  f , F )  o ;q = 62D. 

This completes our discussion of  geometric properties of  the co-A-deviation. 
Of  course analogous results can be established in the standard homotopy 
category using the co-operation of  mapping cones. But this approach makes 
the application of  the Hi l ton-Milnor  theorem cumbersome. 

Next we turn to some algebra used to analyze the geometric coboundary in 
terms of  the Hil ton-Milnor  theorem. Let h , . . . ,  Zk~l-I2,(D~t2k] +1) be the 
fundamental  classes. Then the map 6k is given as follows. Let Oi'. Sik )2n ~ ~),Sik2n++l),l 

0 __--< i __--< k + 1 be given by 
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I 
t s j ~ i  - 1 

Oi(l s) ffi lj + zs+~ j f  i 

(ls+l j >-_ i + 1 

and let 07 • no2 .  + L ~ no2 .  + L be the canonical extension. Then ~O(k) ~ ( k +  1) 

 k(f) = Y. ( -  1)'o, ̂  o f =  ( -  1),o, ̂  o f  
i -O \ i -O 

where addition is with respect to the loop structure, which distributes as 
indicated. (~( - 1)i@ is not the same as (Z( - 1) ia i)  ^ .) L e t  L k C I-I,~'~S~ +l be 
the free Lie algebra generated by the fundamental  classes. The Lazard differen- 
tial [L] is given by 

k + l  

dk:Lk-~Lk+l ,  dk = Y. ( - -  l)idi 
i-O 

where d~ is defined by the same formula as 0~. There is a grading by weight on Lk 
which is respected by dk. The complex (Lk, dk) is called a Lie analyzer and its 
cohomology groups are written as 

H k = ker dk " Lk,m "* Lk  + l,m ~ira d k -  I : L k -  l,m --~ Lk,m, 

where Lk, m is the subspace of  Lk spanned by terms of weight m. A different, but  
chain equivalent differential is introduced by Barratt in [B[], [B2]. In Barratt 's 
notation, H k is written Hk,m. These groups are very difficult to determine. In 
this paper, we use the information that Hp 2 = 0 and Hp 3 = Z/pZ.  We could 
avoid using the second of  these facts were a certain geometric proposition 
known. This appears at the appropriate place in the paper. 

On occasion, our arguments involve inferences about the Lazard cobound- 
ary from information about the geometric coboundary. This step occurs in the 
assertions about p-divisibility of  certain maps. Of  course, the general relation 
between the two is expressed in terms of  the distributive law. For our purposes, 
it is enough to keep track of  weights. We turn to this machinery now. 

Let jk  be a Hall basis for L k. U s i n g  the Hil ton-Milnor  theorem, we filter 
[X2X, ~St2k] +1] by weight; 

Fm ffi II II [z2x,  
I>--m w~-~l 

The basis element w of  weight l can he regarded as a Samelson pro- 



Vol. 66, 1989 Co-H-MAPS TO SPHERES 231 

duct  w : S 2 ~ - ~ f l S ~  +~ with extension w ̂  : [ IS2 'a+ '~D,  Sg~ +1. In terms of  
Samelson products, the distributive law takes the following form. Given 
~81,..., ,8,: S a ~ f lZ ,  a : T -~  D~ a+ t with T a finite complex, then 

i - -  1 w E J '  

where hw: D~ d+~ --* D.S dl'l +t and by definition 

w ^( /~ l  . . . .  , / ~ , )  = ( ~ ,  . . . . .  ~ , )  ^ o w ^ 

where ( j8~, . . . ,  jS,) : S~,) ~ f~Z is ]~i in the i-th factor. 
The map  w ® f - - - w  ^ o f i nduces  an isomorphism 

Lk,m ® [y2X, [~s2nm + 1] __~ Fm/Fro + i 

and Lk.m----spanJ~. Furthermore,  on the associated graded object, the 
geometric and Lazard coboundaries agree, 

We write H~(C) for the cohomology of  the complex (Lk ®C, dk ® 1). In the 
spectral sequence associated with the filtration by weight, we have 

and 
E£,k = H~ ([Z'X, ~ S  ~" +'1) 

d':E~,,k~E~,+,,k+l for r ~ 0 .  

Now if X is a finite complex, the distributive law yields that if w ELk,m, then 

jk(w®.f)___{~kw®f inFm/Fm+, } .  
in FflFl+i unless 1----0 rood m 

So on E ' . ,  d" is 0 unless r - - - - 0 m o d m .  We say that  bE[Z2X, f l ~ + q  is 

homogeneous ofdegree m provided all its projections to FflFt+~ are 0 if I ÷ m.  
Then we have 

ImMMA 2.5. I f  X is a finite complex, b is a homogeneous element 
of prime degree p and b f &  is a geometric coboundary, then [b] in 
Lk,p ® [VX, 118 2~p+ q is a Lazard coboundary. 
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§3. The universal example 

Consider the map fli  : D,/p_ I -S  2n ---4" ~"~2s2n + I from Toda's fibration. Let 

K = S 2n - i U e 2n°- 2 where the attaching map, denoted wn, generates the kernel 

of  the double suspension. Let j : K - - ,  Dip_ i S2n denote the inclusion of  the 

bottom two cells. A retraction r :  Z D i  o_ 1 S 2n -" ZK, constructed by Moore, is 

described in [$2]. The following is proved in [H]. 

LEMMA 3.1. Let h :Dio_ lS2n"* f~Y  be an H-map. Then the adjoint h* 

satisfies h* ~-- (h o j)* o r. 

Taking h = ~ i  in the lemma and then adjointing again yields 

~i** "~ g o I~r 

where g:  Y.2K--* S z~ + ~ is (f~i °j)**. Theorem 1 yields that g is a co-H-map. It is 

our universal example. We use G to denote a primitive homotopy for g. 

REMARK. E2K "" S 2" + ~ v S 2"p. If  n > 1, g is homotopic to the sum of  the 

identity map and suspension. There are no maps from ~arf to S 2~ extending the 

identity, so this representation of  g cannot desuspend. If  n = 1, then 
K ~-- S ~ v S 2 p - 2  and g = 1 + at, where a~ generates H2pS 3. 

The next step is to tie Toda's map into this setting. We have chosen T 

to be an H-map [Gi], so (3.1) yields that T * " . . ( T , j ) * ° r ~ - - Z v , r  where 
v: K---S  2"p-2 is the pinch map. For dimensional reasons, the co-A-deviation 

A , ( g ,  G) : Z2K ~ D.S~] +1 

factors as Aa o Z2v for a unique homotopy class 

aa +'). 

We write its canonical extension 

A~ : ~'~2np+l ..~('}e2n+l 
*~-'(3) • 

Using (2.1) we have 

and (Z2T*)*: y~2D.Io_IS2" --* f?.S 2~+1 

are using • to denote the adjoint 

A , ( g  o ~r, G o Zr) = A~ o ZT* 

A 
- o 

is double adjoint to D.E 2o T. (We 

operator, with the direction deter- 
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mined by context.) Now suppose f :  ~,2X---~s2n+l is a co-H-map. Apply 

Theorem 1 to write 

f_~ go  ~ro  EEl. 

Then by (2.2), there is a primitive homotopy for f indueed  from G, and we can 

write the factorization formula  

A , ( f ,  F)  -- A~ ° (f iE 2 o T o f)**. 

We now prove part of  Theorem 2; S o f** ~ • impliesfis  a co-A-map. Under  

this hypothesis, we have 

~ 2  0 T o f ~_ ~')3p o h,  h : X - *  •3s2np + I. 

Changing f t o  f -  fl0 o h, with the corresponding change in F,  using the facts 

that T is an H-map and 

~ 2  o T o ~"~0 ~--- ~,~3p, 

the factorization formula yields that A , ( f ,  F) = • for the new F.  

Our next task is to get sufficient information regarding the non-triviality of  

A¢. By itself, g seems impossible to analyze. Certain hints can be gleened from 

[B] and [BC]. From these papers one sees a connection between g and w, + t. In 

his study of  desuspension [G2], Gray supplies the information that we use to go 

forward. 

In [G2], spaces Y, and Y~', n > 1, are constructed with the following 

properties, q = 2p - 2: 
( i )  rn ' ~ S 2 n + l  U e 2'+l+q U • • • U e 2"p+l, there are a total of  (n + 1) cells, 

one in each dimension of  the form 2n + 1 + iq, 0 < i < n. Furthermore, #o, is 
non -ze ro  on n 2n + l(yn; Z/pZ) .  

(ii) There is a map g, : Z 2p- l y~ ~ S 2, + 1 with Y, equal to the cofibre of  g,. In 

case n = 1, gl : S2p -'* $3 is O/1- In case n = 2, g2 : S2p + 2 (3 e 4p --~ S 5 is part of  the 

Toda bracket (al, al, al). 

(iii) gn factors as a composition 

Z2p - 1 y ,  z2a E2 K ~2J' ~ - d 2 ~ j p  - 1 S 2 n  ~'li** $ 2  n + 1 

thus gn --~ g ° Z2a. 

We prove that g is not a co-A-map, by proving 

PROPOSITION 3.2. gn is not a co-A-map. 
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PROOF. For dimensional reasons, g, has finite order in [Z 2~- ~ Y~, S 2" + 1], so 
there is a null composition 

s2np t g" S2n + 1 , Y.2V- 1 y~ 

such that t followed by the pinch map to S 2"p has degree some power of p, say 

pb. We also take t to be a suspension. Let Ct be the mapping cone of t and 

h :  C t ----~ S 2n+l 

extend gn. Using property (i), we obtain the information that Pb ~"  is non- 

zero on H2"+~(Ch, Z/~Z), where Ch is the cofibre of  h, and Pb is the b-th 
order Bockstein. Hence Ch cannot be a retract of  Zf~Ch, and is therefore 

not a co-H-space. This means that no matter what homotopies are used, the 
co-H-deviation of  h 

Dh:S2"P --- f l S ~  +1 

is not zero. Furthermore, use of self-maps, as in the proof of  Theorem 1, shows 

that D h EL2, p. Applying Zabrodsky's formula (2.4) and (2.1) yields 

t~2Dh = PbA,(gn, Gn) 

for any primitive homotopy G,. But the facts L~.p = 0 and H 2 = 0 imply that 

~2 = d2 : L2,o --*L3,p is monic. Hence A,(g~, G,) v~ O. 

R~MARK. I f ( p  -- 1) does not divide n, then Berstein's argument [B] shows 

that Yn is not a cogroup. Theorem 1 could have been used to show h is not a 
co-H-map, but the argument is longer than that given. 

Next, we use the information from (3.2) to obtain information about 

AG ~ l"12n p ( ~'~S~3~ + 1). 

PROPOSmON 3.3. There is a primitive homotopy G for g such that Aa E L3,o 
is a cocycle and generates H 3 = Z/IZ. 

PROOF. Let J b e  a Hall basis for L3. Using the Hilton-Milnor theorem, we 
identity A~ with 

II hw(ao), hw(ao)EH2.p(D.S2nlwl+l). 
wEJ 

Collect terms by weight, and write 
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Iw1-1 

Now l _-< p for dimensional reasons. Expressing the formula from (2.5) in 
terms of components yields 

(Al __ ~ )AIG _~. ~2DI. 

Using (2.3) we can change the homotopy by 

G ' - - G -  ~ (A : -~ ) - ID  I 
l<p 

to obtain an element which is homogeneous of degree p. Let Ao ~L3,p be such 
an element. In the proof of (3.2) we obtained the information that pbA¢ is a 
coboundary. Since L4,p is torsion free, it follows that A¢ is a cocycle. From (3.2) 
we know that Ao is not a coboundary, so (3.3) follows. 

REMARK. Let i : S  2n+l--~P2n+2(p) be the inclusion of the bottom cell. If 

one knows that i o gn is not a co-A-map, then a weaker, but just as useful form 
of (3.3) can be proved; Ao generates a cyclic summand of order p in H i .  This 
argument does not rely on Barratt's calculations. For values of n not divisible 
by (p - 1), this fact can be established using Berstein's approach [B]. 

We now prove the other half of Theorem 2; f ir :  E2X--* S 2n +! is a co-A-map, 
then S of** ~ . .  First assume Xis a finite complex. Sincefis assumed to be a 
co-A-map, A. ( f ,  F) = 62w holds. Using the information in (3.3) and applying 
(2.5) yields that 

b ~A~ ®(DE 2 o T of)** 

is a Lazard coboundary in L3,0~[~2X, D~2~+x]. Since AG generates 
H i ffi ZIpZ, the universal coefficient theorem applied to H~([~2X, D.S 2~ + i]) 
yields that (D.E2 o T o f)** is divisible by p. Using the H-structure on S 2~+1, 
we can write 

D.E 2 o To f =  f~3p oh 

for some h : X ~ 3 S  2'*+~. For general X, the above argument shows that 
S o f** is a phantom map. But, by [N'], f~2S2~+1{ p } has H-space exponent p 
and each homotopy group is finite, so phantom maps to this space are trivial. 

Next we prove Theorem 3. Suppose f :  Z2X ~ S 3 is a co-A-map. Consider the 
following diagram 
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X 

~ 3 S 2 0  + 1 

/ ' ~ p -  1 S 2 r , D . S 2 p -  z 

['~2S3(3) 

~3S2p + 1 

1 

where ?: $2o+~{ p} ~ $ 3 ( 3 )  exists because 7.aI:S2p+I~BS3(3)  has order p. 
This construction gives the commutative square on the fight. 

By Theorem 2, 

~ a *  * T , f ~  *. 

So T * ffactors through f~3S2p+~. Thus f c a n  be altered to a map factoring 
through S 1, the fibre of  T. The clause about r l , s  3 follows because the image of 
the suspension map from 1-I,S 2 is 2-primary. 

PROOF OF TI-I~OREM 4. Suppose f :  X--*S 2p-I satisfies a~ ,Y,f,~ , .  We 
have 

A.(a~ .Zf ,  G * Z f )  = A.(a~, G ) o f f  

and divisibility by p of Z2ffollows as in the proof of  Theorem 2. The converse 
is immediate, because if  Z2fis divisible by p, then the suspension of a~, Z f  
is null, but suspension is monomorphism. 
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